VECTOR THEORY OF SELF-FOCUSING

A. A, Kolokolov and A, I, Sukov UDC 535.1

The propagation of light beams in nonlinear media is usually described in a scalar parabolic approxima-
tion. For some models of a nonlinear medium, the beam width can become as small as desired during its
"development, Tnthat case, it is necessary to give up the scalar theory and to solve the complete system of
Maxwell equations, Such a formulation of the problem is very complex and therefore extremely few papers
[1-4] have been devoted to the vector theory of self-focusing, The present paper presents the results of a
study of vector self-focusing for the simplest case of the lowest axially symmetric TM mode.

The system of stationmary nonlinear Maxwell equations
rot H = —ife(|EPE, (1)
rot E = ik H, ko = ole 2)

for a monochromataic beam propagating along the z axis and of bounded cross section has two integrals of
motion independent of z:

= [ | dzdy (1B, ¥, + c.c. ),
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where O (JE?) = S %%ndn. Consequently the integral over the entire cross section of the beam of the z com-~
b

ponent of the Poynting vector is expressed through Iy in the form I = (¢/16x)1; and replaces the well~-known
integral T,=//dxdy|E|? for the scalar parabolic equation [5, 6].

As is well known, the stability of stationary solutions of the scalar wave equation is determined by the
sign of the derivative of I, with respect to the propagation constant [7]. One can expect that the stability of
stationary solutions of the complete system of Maxwell equations (1) and (2) will be determined correspond~
ingly by the derivative of the integral 1, with respect to the propagation constant.

To check this hypothesis, the lowest axially symmetric TM mode was studied for the case of a cubic
medium with a dielectric constant € =£0{1 +82| E|Z}. Note that the analysis of vector self-focusing in [1], which
was based on the dependence of the quantity I=ffdxdy[ E’2 on beam width, is incorrect since [ is not an integral
of motion for the equation system (1), (2).

Writing the intensity of the electric field inthe form E = (y/1/&,)A exp likz — of)] and eliminating the
magnetic field from the original equations, we obtain the following system of equations for the amplitude A of
the fundamental TM mode:

a4 a4,
=l 'aa') + apw =7 ap(p )-v(yz+'z4 FHA!’) - “

where T=kz, p =vykr are dimensionless variables; k=ky€; v is a free parameter which is the propagation con-
stant and which determines the effective width of the field distribution.

Stationary distributions of the field satisfy the system of equations which is obtained by substitution of
Ao, v) = Ajlp) exp lidt + 8)), j =71, 2,
in Egs, (3), (4), where 6=v1+9°—1 and 6r—6z=1r/2’.
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The amplitude Kj (p) satisfies the boundary conditions
A,(0) = 4,(0) = 0, (d4,/dp) (0) = A(00) = 0. ©)

The dependence of the integral T, and of the energy transport velocity V=1,/W on the parameter v,
where W = (1/8x) f{dzdy{[E|* + [H|?}, was calculated for a stationary distribution of the fundamental TM mode.
As is clear from the dependence of the quantity I;/8 on v, where B = c3/(4mze,'|/_§;), shown in Fig, 1, the en-
ergy flux transported by the mode in the z direction increases as vy increases (i.e., with reduction in width of
the mode). Consequently, one can expect that the corresponding mode in a cubic medium would be stable,

The dependence of the quantitng=V/(c/f€;) on ¥ is shown in Fig. 2. The velocity of energy transport de-
creases as the width of the mode decreases, which is in agreement with results known from waveguide theory

{8l

The stability of the fundamental TM mode with respect to small perturbations was also studied by nu-
merical solution of the equation system (3), (4) in which the quasioptical approximation [624,/01?| < |04 /01|
was used for sufficiently small values of ¥, The resultant equations were approximated by an implicit three-
level symmetric regular finite-difference scheme of second order over both variables. Affer proper transfor-
mation of the boundary conditions at infinity [9], the resultant system of algebraic equations was solved by the
stepping method. Monitoring of the accuracy of the calculations was accomplished through conservation of the
integral I,. The relative accuracy of the conservation was 3%. As an initial distribution in this quasioptical
approximation, a perturbed field distribution for the fundamental TM mode was selected:

Er(p, 0) = A(p) exp (i8,) + iap exp (—ayp?),
Ep, 0) = A,(p) exp (i8,) + b exp (— byp?).

The quantities E, and E, satisfied the boundary conditions (5). The values of the parameters a, a4, b, and by
were chosen so that the relative variation of the integral I, was 1-20%.

Numerical calculations on a BESM-4 computer showed that the transverse distribution during develop-
ment remained close to stationary while at the same distances and for the same relative perturbations of the
amplitudes, the fundamental mode in the scalar quasioptical approximation either collapsed or became diffuse

(6l.

Figure 3 shows the radial distributions |A (o, T)| and [A, (e, T)| for ¥=0.2, a=—0.05, a;=0.2, b=0.01,
by =0.1, and various values of 7. The relative contribution of perturbations to the value of I, was 5%. Inprac-
tice, the specified parameters correspond, for example, to a beam from a ruby laser having a diameter ~10a,
a power of 40 kW, and propagating in a medium with £,=1.8- 10~!! absolute units.

In the general case of vector self-channeling cylindrical waveguides [2],
wf——”z 42 "'de .m"“'
Iz/p=le1+72(Ar+Aq>)"v er""f"p—AWAz pdp>0s
(1]

where m is the azimuthal index. Based on the continuity of stationary solutions in terms of y, one can show
that I, ~v% when y— 0 and I, ~ v when y—+», Therefore, dl;/dy> 0 in these cases of greatest practical interest
and the formation of singularities evidently does not occur.

Thus, the study pointed to the possibility of experimental observation of stationary vector wave-
guide solutions in cubic media,
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PLASMA HEATING AT CONSTANT IMPEDANCE

M. E. Gertsenshtein and V. A. Pogosyan UDC 533.9 +537.52 +539.893

It is well known that the plasma conductivity o depends strongly on the temperature T [1], o~TY 2 which
leads to breakdown in plasma matching during heating with an energy source and to a drop in heating efficiency.
Constancy of impedance facilitates broadband matching of an energy source with a target [2, 3]. This paper
demonstrates that the impedance changes little during pulsed heating of a solid plasma through propagation of
an ionization wave [4].

We consider a solid dielectric between the two conductors 8; and 8, of a transmission line (Fig. 1). A
thin wire or film AB is within the dielectric. We limit ourselves to the simplest case where the conductors
S, and 8, are plane-parallel plates. A powerful radio or video pulse is fed into the line [5, 6], the film ex-
plodes {7, 8], and an ionization wave is propagated from the film with the field and current pattern shown in
Fig. 2. The ionization front is propagated to the left, E; #0 on the left ahead of the front, ;=0 in the dielec-
tric, and =0, on the right behind the front. The uhf field or short pulse does not penetrate within the con-
ducting plasma behind the ionization front (E;=0) so that the pulsed current j is zero everywhere except for
a thin skin layer in which energy is deposited, and the propagation of the discharge, as noted in [4], is com~
pletely analogous to the detonation process {4, 9]. In the system shown in Fig. 1, propagation of both a break-
down wave and an ionization wave is possible with the wave having the greater velocity being the one prop-
agated [4].

The propagation of ionization waves in gases was discussed in detail in [4] and the propagation of ioniza~
tion waves was first discussed in [10, 11]. The present paper studies the features of ionization-wave prop~
agation at condensed-state densities,

For the velocity D of a plane detonation wave and the specific internal energy € of the material behind
the front, the relations [4, 9]

D = {2(72 - 1)(S[p)]1/31 (1)
_ 2%3 a3 __ v . :
T =0+ 0" = m—nrrn P @)

are valid, where S is the flux of absorbed energy, erg/(sec *cm?); p is the density of the material; vy is the ef-
fective adiabatic index [9].

For example [7], let the pulse energy be 10 kJ = 101t ergs, the duration T =10"? sec, which corresponds
to a power of ~10'® W=102 erg/sec, let the heated sample be a cylinder of radius ry=1 mm and length 2 mm
with the lateral surface of the cylinder ~10 mm? or ~0.1 em?, and §= 10! W/em?=10% erg/sec - cm?). One
can set p ~1 g/cm?® for a solid dielectrie,
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